Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3
نویسندگان
چکیده
The adsorption and surface reactions of acetaldehyde at 300–673 K on TiO2, CeO2 and Al2O3 were investigated by Fourier transform infrared spectroscopy and mass spectroscopy. Acetaldehyde adsorbs molecularly in two forms on the surfaces: (i) in a less stable H-bridge bonded form and (ii) in a more stable form adsorbed on Lewis sites through one of the oxygen lone pairs. Both forms of molecularly adsorbed acetaldehyde transform into crotonaldehyde (CH3CH–CHCHO) by b-aldolization on the surfaces. The reaction of adsorbed acetaldehyde and crotonaldehyde resulted in the formation of benzene at higher temperature. The formation of crotonaldehyde and benzene depended on the nature and the pre-treatments of the oxides: the amount of crotonaldehyde was higher on H2-pre-treated, while the amount of benzene was higher on O2-pre-treated surfaces. Primarily the more strongly held acetaldehyde underwent dehydrogenation resulting in H2 and acetylene. The formation of ethane was interpreted by hydrogenation of the transitorily formed ethylene and/or by catalytic decomposition of ethanol, which formed from adsorbed ethoxy produced by the surface reduction of acetaldehyde. Acetaldehyde could be oxidized into acetate, the decomposition of which resulted in gas phase methane. No CO and CO2 was detected up to 673 K. # 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Interactions between Surface Vanadate and Surface Sulfate Species on Metal Oxide Catalysts
The interactions between surface sulfate and surface vanadate species present on sulfated supported vanadia catalysts under dehydrated conditions have been investigated with infrared and Raman spectroscopies. The surface sulfate species present on sulfated TiO2, ZrO2, and Al2O3 supports and V2O5/TiO2, V2O5/ZrO2, and V2O5/Al2O3 catalysts have identical molecular structures, i.e., (M-O)3SdO, wher...
متن کاملCytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549
The cytotoxicity of 13 and 22 nm aluminum oxide (Al2O3) nanoparticles was investigated in cultured human bronchoalveolar carcinoma-derived cells (A549) and compared with 20 nm CeO2 and 40 nm TiO2 nanoparticles as positive and negative control, respectively. Exposure to both Al2O3 nanoparticles for 24 h at 10 and 25mgmL 1 doses significantly decreased cell viability compared with control. Howeve...
متن کاملEffect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles
The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch ...
متن کاملThe adsorption and reaction of a titanate coupling reagent on the surfaces of different nanoparticles in supercritical CO2.
The adsorption and reaction in supercritical CO2 of the titanate coupling reagent NDZ-201 on the surfaces of seven metal oxide particles, SiO2, Al2O3, ZrO2, TiO2 (anatase), TiO2 (rutile), Fe2O3, and Fe3O4, was investigated. FTIR and TG analysis indicated that the adsorption and reaction were different on different particle surfaces. On SiO2 and Al2O3 particles, there was a chemical reaction of ...
متن کاملEffect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles
The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch ...
متن کامل